essay代写,代写assignment,paper代写,代写留学作业,英国作业

导航切换

QQ:
153688106

二维码

英国assignment代写|Probiotics for Dental Plaque Degrada

浏览: 日期:2020-06-10

Probiotics Dental Plaque

Oral disease is the most common and costly forms of infections in humans. Only a few studies have been conducted in probiotics for oral health compared with gastrointestinal tract in the past few years. Oral probiotics are likely to have the same mechanisms with the probiotics of gastrointestinal tract, when considering the fact that mouth is first organ consisting of gastrointestinal tract. This review aims to describe current knowledge with respect to probiotic bacteriotheraphy and its safety in the aspect of oral and dental health. Furthermore, the possibility of Kimchi, Korean fermented food, as new reservoir for the purpose of finding probiotic candidates will be discussed in this review paper.

Introduction

Oral disease is the most common and costly forms of infections in humans. Dental caries and periodontal disease reach to almost 95% in general public. There has been limitation on capacity to control the actual infection, in spite of contribution of fluoride and other preventive method to dramatic decline in oral disease [28, 30, 31].

Probiotics have been extensively studied in the gastrointestinal tract. However, probiotics have been studied for promoting oral health as well in the past few years, which is the topic of present review. Highly possibly, it is likely that putative probiotic mechanisms are the same in the mouth with their mode of action in the gastroinstestinal tract, when considering the fact that mouth is first organ consisting of gastrointestinal tract [2].

The concept of the microbial ecological change as a mechanism for oral disease provides radical method for prevention of dental caries through probiotic bacteriotheraphy. Bacteriotheraphy using probiotics can be considered alternative and promising way to get rid of pathogenic members of the microflora. Combat of harmless bacteria with oral pathogens leads to replace resident pathogenic micro biota [3]. However, data is still sparse on the probiotic action in oral cavity. Further studies are needed on the putative probiotic mechanisms of action and their possible effects on oral biofilms.

The safety needs to be investigated thoroughly in administration of probiotics for promoting oral health, even though the cases of infection due to probiotics such as bifidobacteria andlactobacillus are extremely rare [4]. The needs for further studies on safety becomes evident when considering that the increased consumption of probiotic products inevitably results in increased concentration of these microbial inhabitants in the host body.

For the purpose of finding probiotic candidates, Kimchi, Korean fermented food might be considered as new reservoir of probiotics. Both substrates and temperature fermentation of Kimchi are different from the dairy fermented products and other fermented vegetable foods; as a result, the microbial community of Kimchi is quite different from other fermented foods [10]. In spite of its well known health booting functions, only a few studies have been conducted for probiotics regarding promoting oral health. Weissella cibaria is a good example of oral probiotics to inhabit in Kimchi when considering its inhibitory ability in the formation of S. mutans biofilm and its high ecological pH (above pH 5.5) [12].

Present review aims at summarizing the literature published up to now with respect to probiotic bacteriotheraphy and its safety in the aspect of oral and dental health. Furthermore, the possibility of Kimchi as new reservoir for the purpose of finding probiotic candidates will be discussed in this review paper.

New method for dental prevention: Bacteriotheraphy

The causes of change in oral environment, such as illness, diet, or medications, interferes the balance from homeostasis and results in susceptibility to endogenous or exogenous infections. The ecosystem of resident oral micro biota consists of diverse species which need differentiated conditions; that is, nutritional (saccharolytic, proteolytic, secondary feeders), atmospheric (aerobic, anaerobic, facultative, micro-aerophilic, capnophilic) and physico-chemical (pH, co-factors) requirements [29]. The environmental changes mentioned above may lead to dental disease. If there disturbances occur in local environment, potential pathogens acquire a competitive advantage under their favorable conditions, which subsequently disturbs homeostasis in balance and it may lead to dental disease [3].

The insight of the microbial ecological change as a mechanism for oral disease provides radical method for prevention of dental disease by probiotic bacteriotheraphy [3]. Bacteriotheraphy using probiotics can be considered alternative and promising way to get rid of pathogenic members of the microflora. Combat of harmless bacteria with oral pathogens leads to replace resident pathogenic micro biota [3].

Mechanisms of oral probiotic action

The expected roles of oral probiotics are inferred thoroughly from results on gastrointestinal research. The application of probiotics for oral use needs further studies. In spite of limited studies of probitics for oral use, probiotics of gastrointestinal tract may have least the same roles in the eco physiology of oral micro biota, considering the fact that mouth is first organ which consists of gastrointestinal tract [2].

The oral probiotics may have functions in the microbial ecosystem of oral biofilms, as well as in the development of formation of dental plaque. There have been a few anticipated mechanisms for oral probiotic roles.

Adhesion of bacteria to mucous is initial step in pathogenesis and its binding leads to the colonization. The one of the probiotic functions lies in competition with pathogenic microorganisms for nutritional substrates and binding sites. The combat, using harmless bacteria, can replace pathogen and it may achieve the homeostasis of microbial ecosystem [3].

The some of probiotics produce antimicrobial substance, such as organic acids, hydrogen peroxide, carbon peroxide, diacetyl, bacteriocins, and adhesion inhibitors, and these components can inhibit growth of pathogens and binding to host’s epithelia cells [6, 9].

Probiotics are known to enhance the colonization resistance to pathogenic bacteria by reinforcing the mucosal barrier in the gut [5]. Also, probiotics normalize an increased permeability of the biofilm. Probiotics have capacity to activate and control the immune system [44]; also, they can use immune exclusion, immune elimination, and immune regulation to enhance the gut defense [8].

To summarize with probiotics’ mechanisms, their roles of action include 1) competition with potential pathogens for binding sites and nutritional substrates and 2) production of antimicrobial substrates, and 3) local and systemic immunomodulation. Figure 1 illustrates the hypothetical mechanisms of probiotics in oral disease.

Probiotic bacteria for oral application

There are a numerous miroorganisms classified as probiotics and most of probiotics belong to the genera Lactobacillus and Bifidobacterium [1]. The studies regarding probiotics focus intensively on L. acidophilus, L. casei, L. reuteri and Bifidobacterium bifidum [3]. For oral application, L. rhamnosous GG and L. reuteri have been reported to reduce counts of S. mutans, thereby both may play the important role, as oral probiotics, in careis prophylaxis [15, 23, 25]. Recently, L. rhamnosous GG is found to reduce oral Candida counts as well, and this finding suggests alternative approach to eliminate oral yeast [19]. Possible probiotics for oral application are present in Table 1.

Table 1. Tested strains considered as probiotics for the oral application [1].

Clinical studies

Only a few researches have been conducted to assess the roles and effects of probiotics for promoting oral and dental health. In Helsinki, Finland, it was found that administration of L. rhamnosous GG to children reduced their dental caries and initial caries process. 594 children were offered probiotic milk and normal milk with meals, and which was practiced for 5 days per week during 7 months. The results of caries risk, calculated by clinical and microbiological data relevant to S.mutans level of dental plaque and saliva, showed lower counts of S.mutans and less dental caries [7].

Another study was conducted in Finland again, and which reported that an inhibitory effect of L. rhamnosous GG and bifidobacteria on S. mutans and yeast are shown in young adults who consumed cheese containning a combination of L. rhamnosous GG and bifidobacteria by short term intervention. These subjects consisted of 74 people and 18-35 year old, and it was double-blinded, randomized, placebo-controlled study. While the significant reduction of S. mutans counts was observed in the intervention group during the post treatment period, any significant difference between the intervention group and control group regarding S. mutanslevel [45].

Recently, one study was carried out with application of Weissella cibaria belonging to new genus for oral probiotics in South Korea. The authors demonstrated that two W. cibaria isolates from human saliva have inhibitory activities on the formation of biofilm, both in vitro and in vivo.72 healthy subjects between the ages of 20 and 30 were volunteered to participate into this study. Plaque scoring was measured based on the debris index of the simplified oral hygiene index (OHI-S).In the study, to determine the effects of W. cibaria isolates on biofilm formation in human adult, the plaque scores before and after mouth rinsing with suspensions of W. cibariawere assessed. The result showed the significant reduction in the plaque scores of the adults by application of CMS1. This study attempted the first trial to demonstrate a strain in genusWeissella may be used as a probiotic for oral health. Also, W. cibaria has not, up to date, been reported to have association with any evidence of pathogenicity [12].

Study about the effect of Lactobacillus reuteri on chronic periodontitis was conducted in Malmö, Sweden, and which showed that Lactobacillus reuteri was efficacious in reducing gingivitis and decreasing gum bleeding. It was practiced for 2 weeks, and was conducted by randomized, placebo-controlled, double blind study. 59 patients with gingivitis were received one of two different Lactobacillus reuteri formulations (LR-1 or LR-2). Among 59 patients, 20 patients were randomly chosen to LR-1, 21 to LR-2 and 18 to placebo. Significant reductions in gingival index were observed in all 3 groups. Significant reductions in plaque index were observed in LR-1 and in LR-2 from the 0 day to 14th day, but not in the placebo group. At 14th day, colonization of Lactobacillus reuteri was observed with 65% patients in LR-1 and 95% patients in the LR-2 group [21].

Safety aspect of probiotics: Lactobacilli and Bifidobacteria

During last several years, the safety issue has become special concern because of the increased probiotic use as supplementation in the food products. For the proper use of probiotics, the following criteria should be satisfied; 1) putative probiotics should not pathogenic. 2) probiotic candidate should not have any growth factors for pathogenic bacteria. 3) probiotic candidates should not contain easily transferable antibiotic resistance genes to other genera [18].

The increased consumption of probiotic products unavoidably results in increased concentration of these microbial inhabitants in the host body [1]. The cases of infection with bifidobacteria and lactobacillus are tremendously rare and there have been approximately 180 reported cases during last 30 years [58]. Most of the rare cases of infection due to lactobacilli occur in the patients with immunocompromised or underlying diseases such as diabetes, cardiovascular disease, gastrointestinal disorder, malignancies, or organ transplant patients [4].

However, there has not been any reported evidence that consumption of either lactobacilli orbifidobacteria exert increased risk of opportunistic infections among immunocompromised patients who are more vulnerable to pathogenic bacterial infection or have more risk of opportunistic infections. There have been several clinical studies conducted to assess the safety of probiotics in patients with HIV infection and these studies support the safety of consumption of probiotics in these immunocompromised patients [49, 50].

The absence of acquired antibiotic resistance is another important criterion in safety use of probiotics. Some of probiotics are closely related to opportunistic pathogens and these probiotics may transfer their antimicrobial resistance genes to potential pathogens [22]. The antibiotic resistance (nonsusceptibility) is regarded to have no risk when it does not render probiotics untreatable infections in rare cases or when any transferal of antimicrobial resistance genes do not occur to the potential pathogens.

Numerous strains of lactobacilli have vancomycin resistance. The vancomycin resistance genes of lactobacillus are thought to be stably located in the chromosome so that their transferals are not likely to happen between microorganisms [51].

For the purpose of preventing antibiotic resistance, further studies need to be done when considering that the number of species which develop antibiotic resistance has been increased and it is now growing concern [1].

Appropriate vehicles for administration of probiotics

Probiotics should be able to adhere to dental tissue to incorporate biofilm and compete with cariogenic bacteria [32]. In order to achieve the goal, the installation of probiotics in oral tissue is primarily done. However, the interaction time between probiotics and plaque is important factor because the activity of probiotics is more increased if the probiotics are installed in the dental plaque for longer duration of contact time [3]. Furthermore, in order for prevention or treatment of dental disease, specially designed formulas, device, or carriers delivering probiotics slowly into oral environment may be considered [1]. In this point of view, appropriate vehicles for oral probiotics are discussed here.

Dental research result showed that the consumption of the probiotic yoghurt has nothing to do with installation of lactobacilli in the oral environment. Up to date, it is uncertain about the ability of probiotics to colonize in the oral tissue. Any residual antibacterial activity after cession of consumption was not observed whereas regular consumption of yoghurt containing probiotics can reduce the number of salivary lactobacilli and S. mutans.[33, 34].

Lactic acid bacteria (LAB) have been thought as opportunistic pathogens due to their production of ferment sugars and acid. Of these bacteria, both lactobacilli and mutans streptococci have been considered detrimental to oral health [47]. In spite of its contribution to low pH environment, the good buffering capacity of milk exerts appropriate pH level, when LAB are administrated in means of milk [48]. Moreover, calcium and other substances may play important role in protection of tooth surface and inhibition of adherence of harmful micro-flora in the mouth.

In a recent study, Lactobacilli were orally administrated both in capsules and liquid form to determine the role of direct contact with oral cavity and examine whether administrated probiotics exerts reduction cariogenic S. mutans level. In that study, administration oflactobacilli in liquid and in capsule form contributes to increase the counts of lactobacilli while any significant difference was not observed in the S. mutans counts [24].

It is worthy to be noted that reduced demineralization of teeth can be due to high concentration of Ca rather than putative probiotics, lactobcilli, in the case of consumption of the dairy products containing both high Ca and putative probiotics [3].

Cheese might be an ideal carrier for delivery of probiotics to oral to promote dental health [2]. Cheese is reported to exert beneficial effect on oral health in the way that its administration prevents demineralization and promotes remineralization of enamel and reduce the salivary S. mutans counts in significant level [46].

Chewing gums containing L. reuteri Prodentis is a way of prevention for dental caries. Practice of chewing gums twice a day is known to remarkably reduce S. mutans counts in the oral cavity [http://www.biogaia.se]. Moreover, a straw containing probiotics is another effective way of non-dairy delivery, and its delivery method showed significant level of reduction in salivary S. mutans in placebo-control study [54].

Table 2 illustrates the variety means of carrier facilitated up to date for the delivery of probiotics to dental tissue [1].

Weissella cibaria: new potential candidate for oral probioics

Weissella species belongs to Lactic acid bacteria, and the genus Weissella has recently been separated from the genus Lactobacillus due to 16S rRNA phylogenetic analyses. (fig 2) [39].Weissella cibaria is Gram-positive and heterofermentative, non-spore-forming, non-motile bacillus which is isolated from fermented foods, including Kimchi. This species is known to produce dextran from sucrose [38]. In spite of characterization of this species, its effect on dental health has been studied very recently.

Lactic acid bacteria (LAB) inhabit mainly in gastrointestinal tract (GI tract) and some of them have been reported to exert beneficial health in human due to their protective roles against a number of pathogenic infections [36,37]. Nevertheless, the most of lactic acid bacteria are known to play the opportunistic role in the pathogenesis of dental caries because their production of lactic acid causes demineralization of the enamel of tooth and extracellular polysaccharides can cause contributes to elevate their adherence to teeth [35].

Recently, Chung et al 2006 demonstrated the inhibitory ability of Weissella cibaria in the formation of S. mutans biofilm, both in vitro and in vivo. In this study, two W. cibaria strains, CMS1 and CMS2, were isolated and selected based on their inhibitory effect on the formation ofS. mutans biofilm. As a result, two W. cibaria isolates are showed to remarkably suppress the proliferation of S. mutans.W. cibaria isolates reduced the proliferation of S. mutans by 22 and 44-fold in the groups administrated with two W. cibaria isolates compared to the control group (table 3). However, any inhibitory activity of S. mutans on growth of W. cibaria was not observed. The culture supernatant (CS) of two W. cibaria isolates did not show any apparent inhibitory effects on the S. mutans proliferation (table 3), whereas the CS of W. cibaria stains reduced biofilm formation by S. mutans (fig. 2). Therefore, the authors concluded that the inhibitory effects associate with W. cibaria CMS1 and CMS3 may be resulted primarily from the substance with the capacity to directly suppress the formation of S. mutans biofilm rather than the inhibition of S. mutans biofilm by antibacterial materials [12].

Adherence to the oral tissue and surface of teeth is an important prerequisite for the colonization of probiotics, providing a competitive advantage in this ecosystem of micro biota [57]. Previous studies showed that the aggregation ability has strong association with the cell adherence properties. Kang et al (2005) demonstrate co-aggregation ability of W. cibaria withFusobacteruum nucleatum as well as the adherence property of W. cibaria to epithelial cells [14]. Fusobacterium nucleatum, as a bridge-organism, enables the colonization of other bacteria by co-aggregation [55]. There have been many studies showing that the co-aggregation abilities of lactobacilli species prevents colonization of pathogenic bacteria by formation of a barrier of lactobacilli [27, 56], and growth of pathogens is also inhibited by various substances from Lactobacillus species [14].

Kang et al (2005) characterized the W. cibaria components mediating the adherence to F. nucleatum by various pretreatment of the bacterial cells. Pronase-treated F. nucleatum did not inhibit the coaggregation; however, in case of W. cibaria, it led to additional reduction in co-aggregation between both species, thus suggesting the proteinaceus nature of the interspecies interaction. Heat-resistant components firmly attached to the cell surface of W. cibaria were responsible for their co-aggregation with F. nucleatum. The results of this study also showed the important role of the S-layer proteins of W. cibaria in cell wall adherence to the epithelial cells. The adhesiveness of W. cibaria to the epithelial cells was investigated. All three W. cibariaisolates were strongly attached to both KB cells and HeLa cells, but the numbers of W. cibariaadhered to epithelial cells remarkably reduce after the LiCl treatment (Fig. 4). These results implied that the surface layer proteins of the W. cibaria strains are strongly associated with the adhesion process [14].

It is remarkable that ecological pH of Weissella cibaria is high (above pH 5.5) in no conjunction with lactobacilli, thereby the possibility of opportunistic role in development of dental caries due to production of lactic acid may be ruled out [12]. These characteristics of the W. cibariastrongly suggest their possibility of probiotic candidate appropriate for oral cavity.

Kimchi: New reservoir of probiotics

Kimchi is well known traditional Korean food fermented from variety of vegetables. It is the product of lactic acid fermentation of Chinese cabbage stuffed with various different spices, including hot pepper, garlic, and ginger [11].

The microbial community of Kimchi is quite different from other fermented vegetable foods when considering that Kimchi fermentation is governed by the distinct population dynamics of subsets of Weissella, Leuconostoc, Lactobacillus species [10]. In general, lactic acid bacteria play the important role in fermented vegetable foods [11]. Lactobacilli play the important role in the fermentation process of Mexican pozol, acid beverage produced by fermentation of nixtamal [42, 43]. Lb. plantaum and Lb. manihotivonrans are predominant species in fermentation process of cassava sour starch [41]. Lc. mesenterteroides, P. pentosaceus, Lb. brevis and Lb. plantrarum play the important role in fermentation of saukeraut [40].

In case of Kimchi fermentation, Weissella cibaria as well as two Leuconostoc species, specificallyLeuconostoc citreum and Leuconostoc gasicominatum are predominant species during early stages (pH>4.6), and then microbial diversity reduced remarkably, namely Weissella koreensisbecomes predominant species in the later stages. (15℃ program: Temperature decreased to -1 ℃ (at day 3) from 15 ℃ over 24 h) [10]. Weissella koreensis, a psychrophilic bacterium, can be dominating species because of its ability to grow in stressful conditions, e.g. -1℃ and pH<4.3, under which majority of other existing species are deprived of the capacity to grow. (fig 5) Table 4 presents the composition of lactic acid bacterial species during kimchi fermentations at 15℃ program [10].

The fermentation temperature, one of the crucial factors to determine microbial populations, in Kimchi is different from the dairy products other fermented vegetable foods, when considering the fact that proper fermentation temperature for Kimchi is 15℃ rather than 37~ 45 ℃ where dairy products are properly fermented [10].

Conclusion

Oral disease is the most common and costly forms of infections in humans [3]. There has been limitation on capacity to control the actual infection, in spite of contribution of fluoride and other preventive method to dramatic decline in oral disease. Bacteriotheraphy using probiotics may provide alternative and promising way to get rid of pathogenic member of bacteria, and which results in balanced homeostasis in ecosystem of micro biota [3].

Most possibly, it is likely that putative probiotic mechanisms are the same in the mouth with their mode of action in the gastrointestinal tract, when considering the fact that mouth is first organ consisting of gastrointestinal tract [2]. Up to date, data is still sparse on the probiotic action in oral cavity. Further studies are needed on the putative probiotic mechanisms of action and their possible effects on oral biofilms.

The safety of probiotics needs further investigation, even though the cases of infection due to probiotics such as bifidobacteria and lactobacillus are extremely rare [52, 53]. The needs for further studies on safety becomes evident when considering that the increased consumption of probiotic products inevitably results in increased concentration of these microbial inhabitants in the host body [1].

Lactic acid bacteria (LAB) inhabit mainly in gastrointestinal tract (GI tract) and some of them have been reported to exert beneficial health in human due to their protective roles against a number of pathogenic infections [36, 37]. Nevertheless, the most of lactic acid bacteria are known to play the opportunistic role in the pathogenesis of dental caries because their production of lactic acid causes demineralization of the enamel of tooth and extracellular polysaccharides contributes to elevate their adherence to teeth [35].

For the purpose of finding probiotic candidates, Kimchi, Korean fermented food might be considered as new reservoir of probiotics. Unlike dairy fermented product, Kimchi is the product of lactic acid fermentation of Chinese cabbage with variety of vegetables. The fermentation temperature, one of the crucial determinants to microbial populations, is 15℃ rather than 37~ 45℃. As result, the microbial community of Kimchi is quite different from fermented dairy foods as well as other fermented vegetable foods when considering the fact that Kimchi fermentation is governed by the distinct population dynamics of subsets of Weissella, Leuconostoc, Lactobacillus species [10].

Weissella cibaria is a good example of oral probiotics to inhabit in Kimchi. The inhibitory ability of Weissella cibaria was shown in the formation of S. mutans biofilm both in vitro and in vivo [12]. The adhesiveness of W. cibaria, an important prerequisite for the colonization of probiotics [57], to the epithelial cells was demonstrated and it may provide a competitive advantage in this ecosystem of micro biota [11]. Futhermore, ecological pH of Weissella cibariais high (above pH 5.5) in no conjunction with lactobacilli; therefore, the possibility of opportunistic role in development of dental caries due to production of lactic acid may be excluded [12]. These characteristics of the W. cibaria strongly suggest their possibility of probiotic candidate appropriate for oral cavity.

The possibility of Kimchi as new reservoir is worth to be considered for the purpose of finding probiotic candidates that may have new characteristics.

References

[1] JH Meurman, I Stamatova (2007) Probiotics: contributions to oral health Oral Diseases 13, 443–451.

[2] Jukka H. Meurman (2005) Review Probiotics: do they have a role in oral medicine and dentistry? Eur J Oral Sci 113: 188–196.

[3] E Caglar, B Kargu, I Tanboga (2005) Bacteriotherapy and probiotics’ role on oral health

Oral Diseases 11, 131–137

[4]S. P. Borriello, W. P Hammes, W. Holzapfel, P. Marteau, J. Schrezenmeir,M. Vaara, and V. Valtonen (2003) Safety of Probiotics That Contain Lactobacilli or Bifidobacteria Clinical Infectious Diseases 2003; 36:775–80

[5] Saxelin M. Lactobacillus GG – a human probiotic strain with thorough clinical documentation. Food Rev Int 1997; 13: 293–313.

[6] Silva M, Jacobus NV, Deneke C, Gorbach SL. Antimicrobial substance from a human Lactobacillus strain. Antimicrob Agents Chemother 1987; 31: 1231–1233.

[7] Schupbach P, Neeser JR, Golliard M, Rouvet M, Guggenheim B. Incorporation of caseinoglycomacropeptide and caseinophosphopeptide into salivary pellicle inhibits adherence of mutans streptococci. J Dent Res 1996; 75: 1779–1788.

[8] Isolauri E, Kirjavainen PV, Salminen S. Probiotics-a role in the treatment of intestinal infection and inflammation? Gut 2002; 50(Suppl III): 54–59.

[9] Ouwehand AC. Antimicrobial components from LAB. In: Salminen S, Wright A, eds. Lactic acid bacteria. New York: Marcel Dekker Inc., 1998; 139–159.

[10] Jinhee Cho1, Dongyun Lee1, Changnam Yang2, Jongin Jeon2, Jeongho Kim1 & Hongui Han1 (2006) Microbial population dynamics of kimchi, a fermented cabbage product. FEMS Microbiol Lett 257 262–267

[11]Myungjin Kim, Jongsik Chun (2005) Bacterial community structure in kimchi, a Korean fermented vegetable food, as revealed by 16S rRNA gene analysis. International Journal of Food Microbiology 103 91–96

[12] M.-S. Kang, J. Chung, S. M. Kim K.-H. Yang J. S. Oh (2006) Effect of Weissella cibariaisolates on the Formation of Streptococcus mutans biofilm. Caries Res 2006;40:418–425

[13] Kang M-S, Kim B-G, Chung J, Lee H-C, Oh J-S. Inhibitory effect of Weissella cibaria

isolates on the production of volatile sulphur compounds. J Clin Periodontol 2006; 33:

226–232.

[14] Mi-Sun Kang, Hee-Sam Na, Jong-Suk Oh (2005) Coaggregation ability of Weissella cibaria isolates with Fusobacterium nucleatum and their adhesiveness to epithelial cells FEMS Microbiology Letters 253 (2005) 323–329

[15] Ahola AJ, Yli-Knuuttila H, Suomalainen T et al (2002). Shortterm consumption of probiotic-containing cheese and its effect on dental caries risk factors. Arch Oral Biol 47: 799–804.

[16] Boriello SP, Hammes WP, Holzapfel W et al (2003). Safety of probiotics that contain lactobacilli or bifidobacteria. Clin Infect Dis 36: 775–780.

[17] Boris S, Suarez JE, Barbes C (1997). Characterization of the aggregation promoting factor from Lacobacillus gasseri, a vaginal isolate. J Appl Microbiol 83: 413–420.

[18] Grajek W, Olejnik A, Sip A (2005). Probiotics, prebiotics and antioxidants as functional foods. Acta Biochim Pol 52: 665–671.

[19] Hatakka K, Ahola AJ, Yli-Knuuttila H, Richardson M, Poussa T, Meurman JK (2007). Probiotics reduce the prevalence of oral Candida in the elderly – a randomized controlled trial. J Dent Res 86: 125–130.

[20] Kolenbrander PE (2000). Oral microbial communities: biofilms, interactions, and genetic systems. Annu Rev Microbiol 54: 413–437.

[21] Krasse P, Carlsson B, Dahl C, Paulsson A, Nilsson A, Sinkiewicz G (2006). Decreased gum bleeding and reduced gingivitis by the probiotic Lactobacillus reuteri. Swed Dent J 30: 55–60.

[22]Lester CH, Frimodt-Moller N, Sorensen TL, Monnet DL, Hammerun AM (2006). In vivo transfer of the vanA resistance gene from an Enterococcus faecium isolate of animal origin to an E. faecium isolate of human origin in the intestines of human volunteers. Antimicrob Agents Chemother 50: 596–599.

[23] Meurman JH, Antila H, Salminen S (1994). Recovery of Lactobacillus strain GG (ATCC 53103) from saliva of healthy volunteers after consumption of yoghurt prepared with the bacterium. Microb Ecol Health Dis 7: 295–298.

[24] Montalto M, Vastola M, Marigo L et al (2004). Probiotics treatment increases salivary counts of lactobacilli: a double-blind, randomized, controlled study. Digestion 69: 53–56.

[25] Nase L, Hatakka K, Savilahti E et al (2001). Effect of longterm consumption of a probiotic bacterium, Lactobacillus rhamnosus GG, in milk on dental caries and caries risk children. Caries Res 35: 412–420.

[26] Nikawa H, Makihira S, Fukushima H, Nishimura H, Ozaki Y, Ishida K (2004). Lactobacillus reuteri in bovine milk fermented decreases the oral carriage of mutans streptococci. Int J Food Microbiol 95: 219–223.

[27] Reid G, McGroarty JA, Angotti R, Cook RL (1988). Lactobacillus inhibitor production against Escherichia coli and coaggregation ability with uropathogens. Can J Microbiol 34: 344–351.

[28] Rolla G, Ogaard B (1991). Clinical effect and mechanism of cariostatic action of fluoride containing toothpastes: a review. Int Dent J 41: 171–174.

[29] Cassell G, Ellen R, Mangan DF et al (1997). Infectious diseases planning, Workshop Report. National Institute of Dental & Craniofacial Research: Bethesda, MD.

[30] Reich E (2001). Trends in caries and periodontal health epidemiology in Europe. Int Dent J 51(Suppl. 6): 392–398.

[31] Kargul B, Caglar E, Tanboga I (2003). History of water fluoridation. J Clin Pediatr Dent 27: 213–217.

[32] Grudianov AI, Dmitrieva NA, Fomenko EV (2002). Use of probiotics Bifidumbacterin and Acilact in tablets in therapy of periodontal inflammations. Stomatologiia Mosk 81: 39–43.

[33] Busscher HJ, Mulder AF, van der Mei HC (1999). In vitro adhesion to enamel and in vivo colonization of tooth surfaces by lactobacilli from a bio-yoghurt. Caries Res 33: 403–404.

[34] Petti S, Tarsitani G, D’Arca AS (2001). A randomized clinical trial of the effect of yoghurt on the human salivary microflora. Arch Oral Biol 46: 705–712.

[35] Loesche WJ: Role of Streptococcus mutans in human dental decay. Microbiol Rev 1986; 50: 353–380.

[36] Gilliland SE, Nelson CR, Maxwell C: Assimilation of cholesterol by Lactobacillus acidophilus.Appl Environ Microbiol 1985; 49: 377–381.

[37] Gill HS, Shu Q, Lin H, Rutherfurd KJ, Cross ML: Protection against translocating Salmonella typhimurium infection in mice by feeding the immuno-enhancing probiotic Lactobacillus rhamnosus strain HN001. Med Microbiol Immunol 2001; 190: 97–104.

[38] Bjorkroth KJ, Schillinger U, Geisen R, Weiss N, Hoste B, Holzapfel WH, Korkeala HJ, Vandamme P: Taxonomic study of Weissella confuse and description of Weissella cibaria sp. nov., detected in food and clinical samples Int J Syst Evol Microbiol 2002; 52: 141–148

[39]Stiles ME, Holzapfel WH: Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 1997; 36: 1–29.

[40] Pederson, C.S., Albury, M.N., 1969. The sauerkraut fermentation. New York State Agricultural Experiment Station Bulletin, vol. 824. New York State Agricultural Experiment Station, Geneva, NY.

[41] Omar, N.B., Ampe, F., Raimbault, M., Guyot, J.P., Tailliez, P., 2000. Molecular diversity of lactic acid bacteria from cassava sour starch (Colombia). Syst. Appl. Microbiol. 23, 285–291.

[42] Ampe, F., ben Omar, N., Moizan, C., Wacher, C., Guyot, J.P., 1999. Polyphasic study of the spatial distribution of microorganisms in Mexican pozol, a fermented maize dough, demonstrates the need for cultivation-independent methods to investigate traditional fermentations. Appl. Environ. Microbiol. 65, 5464–5473.

[43] Escalante, A., Wacher, C., Farres, A., 2001. Lactic acid bacterial diversity in the traditional Mexican fermented dough pozol as determined by 16S rDNA sequence analysis. Int. J. Food Microbiol. 64, 21– 31.

[44] Kato I, Yokura T, Mutai M. Macrophage activation by Lactobacillus casei in mice. Micr Immunol 1983; 27: 611–618

[45] Ahola AJ, Yli-Knuuttila H, Suomalainen T, Poussa T, Ahlstrom A, Meurman JH, Korpela R. Short-term consumption of probiotic-containing cheese and its effect on dental caries risk factors. Arch Oral Biol 2002; 47: 799–804.

[46] Harper DS, Osborn JC, Hefferren JJ, Clayton R. Cariostatic evaluation of cheeses with diverse physical and compositional characteristics. Caries Res 1986; 20: 123–130.

[47] Toi CS, Mogodiri R, Cleaton-Jones PE. Mutans streptococci and lactobacilli on healthy and carious teeth in the same mouth of children with and without dental caries. Microbial Ecol Health Dis 2000; 12: 35–41.

[48] Nase L, Hatakka K, Savilahti E, Saxelin M, Po¨nka¨ A, Poussa T, Korpela R, Meurman JH. Effect of long-term consumption of a probiotic bacterium, Lactobacillus rhamnosus GG, in milk on dental caries and caries risk in children. Caries Res 2001; 35: 412–420

[49] Wolf BW, Wheeler KB, Ataya, DG, Garleb KA. Safety and tolerance of Lactobacillus reuterisupplementation to a population infected with the human immunodeficiency virus. Food Chem Toxicol 1998; 36: 1085–94.

[50] Cunningham-Rundles S, Ahrne´ S, Bengmark S, et al. Probiotics and immune response. Am J Gastroenterol 2000; 95:S22–5.

[51] Tynkkynen S, Singh KV, Varmanen P. Vancomycin resistance factor of Lactobacillus rhamnosus GG in relation to enterococcal vancomycin resistance (van) genes. Int J Food Microbiol 1998; 41:195–204.

[52] Gasser F. Safety of lactic-acid bacteria and their occurrence in human clinical infections. Bulletin de L’Institut Pasteur 1994; 92:45–67.

[53] Saxelin M, Chuang NH, Chassy B, et al. Lactobacilli and bacteremia in southern Finland, 1989–1992. Clin Infect Dis 1996; 22:564–6.

[54] C¸ aglar E, Cilder SK, Ergeneli S, Sandalli N, Twetman S (2006). Salivary mutans streptococci and lactobacilli levels after ingestion of the probiotic bacterium Lactobacillus reuteri ATCC 55739 by straws or tablets. Acta Odontol Scand 64: 314–318.

[55] Kolenbrander PE (2000). Oral microbial communities: biofilms, interactions, and genetic systems. Annu Rev Microbiol 54: 413–437.

[56] Boris S, Suarez JE, Barbes C (1997). Characterization of the aggregation promoting factor from Lacobacillus gasseri, a vaginal isolate. J Appl Microbiol 83: 413–420

[57] Lamont, R.J. and Jenkinson, H.F. (2000) Adhesion as an ecological determinant in the oral cavity In: Oral Bacterial Ecology: The Molecular Basis (Kuramitsu, H.K. and Ellen, R.P., Eds.), pp. 131–168. Horizon Scientific Press, Wymondham

[58] Cunningham-Rundles S, Ahrne´ S, Bengmark S, et al. Probiotics and immune response. Am J Gastroenterol 2000; 95:S22–5.

 

益生菌牙菌斑
口腔疾病是人类感染的最常见和费用的形式。只有少数的研究已进行了口腔健康的益生菌相比,在过去几年的胃肠道。口服益生菌是可能具有相同的机制与胃肠道的益生菌,当考虑到一个事实,嘴是由胃肠道的第一个器官。这次审查的目的来形容当前:尊重益生菌bacteriotheraphy的,其安全性在口腔和牙齿健康方面的知识与。此外,泡菜,韩国发酵食品,如发现益生菌候选人为目的的新水库的可能性将讨论在本次审查的纸。
介绍
口腔疾病是人类感染的最常见和费用的形式。龋齿和牙周病,几乎达到95%的普罗大众。已经有限制的控制能力实际感染,尽管贡献急剧下降,口腔疾病[28 , 30 , 31]氟等预防方法。
益生菌已被广泛研究,在胃肠道中。然而,益生菌已经研究了促进口腔健康,以及在过去的几年中,这是本次审查的话题。性高,所以,它很可能假定益生菌的机制是相同的,它们的作用模式在gastroinstestinal道在口中,当考虑一个事实,即口是由胃肠道[2]的第一个器官。
作为一种机制,对口腔疾病的微生物生态变化的概念,提供激进为预防龋齿通过益生菌bacteriotheraphy的方法。使用益生菌Bacteriotheraphy可以被视为替代和有前途的方式来摆脱致病的菌群成员。战斗无害的细菌与口腔的致病菌导致更换驻地病原微生物生物群[3] 。然而,数据仍然是稀疏在口腔中的益生菌的动作。公认的益生菌的作用机制及其可能对口腔生物膜的影响还需要进一步研究。
管理为口腔健康促进益生菌的安全性需要进行彻底调查,即使感染的情况下,由于双歧杆菌和乳酸菌等益生菌,是极为罕见的[4] 。进一步研究安全的需要变得明显当考虑到益生菌产品不可避免地导致这些微生物在宿主体内居民的浓度增加的消费量增加。
发现益生菌候选人的目的,泡菜,韩国发酵食品中可能被视为新水库益生菌。两个基板和低温发酵泡菜乳品发酵产品及其他发酵植物性食品不同,其结果是,在微生物群落泡菜等发酵食品是相当不同的[10] 。尽管其众所周知的健康引导功能,只有少数的研究已经进行了关于促进口腔健康的益生菌。 Weissella cibaria是口服益生菌居住在泡菜时,考虑到其抑制变形链球菌生物膜和高生态的pH值( pH值5.5以上) [12]的形成能力的一个很好的例子。
本次审查的目的是总结发表的文献现在到的益生菌bacteriotheraphy和其安全性方面的口腔和牙齿健康的尊重。此外,泡菜作为新水库发现益生菌候选人为目的的可能性将讨论在本次审查的纸。
牙病防治新方法: Bacteriotheraphy
在口腔环境中的变化的原因,如疾病,饮食,或药物,干扰从稳态平衡,导致内源性或外源性感染的易感性。居民口腔微生物的生物群的生态系统,包括需要区别的条件的不同种类的动物,营养(糖化,蛋白水解,二次进料器) ,大气(好氧,厌氧的,兼性,微好氧capnophilic )和物理化学( pH值,辅因子)的要求[29]。上面提到的环境变化可能导致牙齿疾病。如果有干扰发生在本地环境的潜在病原体的获得有竞争力的优势有利的条件下,其后干扰稳态平衡的,它可能会导致牙科疾病[3] 。
作为一种机制,对口腔疾病的微生物生态变化的洞察力提供预防牙科疾病的根治方法,由的益生菌bacteriotheraphy [ 3] 。使用益生菌Bacteriotheraphy可以被视为替代和有前途的方式来摆脱致病的菌群成员。战斗无害的细菌与口腔的致病菌导致更换驻地病原微生物生物群[3] 。
的口服益生菌行动机制
预期的角色口服益生菌对胃肠道的研究结果推断彻底。口服益生菌的应用还需要进一步研究。尽管供口服用有限的probitics研究,胃肠道的益生菌可能至少有口服的微生物群的生态生理相同的角色,考虑到一个事实,嘴是由胃肠道[2]的第一个器官。
口服益生菌可能有口腔生物膜中的微生物生态系统的功能,以及在发展形成牙菌斑。已经有一些预期机制口服益生菌角色。
细菌对粘膜粘附是发病的最初步骤,并结合导致定植。益生菌的功能之一在于在竞争中病原微生物的营养基质和结合位点。战斗,用无害的细菌,可代替病原体和微生物生态系统[3] ,它可以达到动态平衡。
的一些益生菌产生抗菌物质,如有机酸,过氧化氢,过氧化碳,丁二酮,细菌素,粘附抑制剂,这些成分可以抑制病原体的生长和主机的上皮细胞的结合[ 6 , 9] 。
益生菌是已知的致病细菌,通过加强在肠道中的[5]的粘膜屏障,以提高定植抗力。此外,益生菌正常化的生物膜的通透性增加。益生菌有能力来激活和控制免疫系统[ 44 ] ,他们也可以使用免疫排斥,免疫消除,增强肠道的防御和免疫调节[8] 。
要总结与益生菌的机制,他们的角色的行动包括:1)竞争与潜在病原体的结合位点和营养底物和2 )生产抗菌基板,和3)的局部和全身的免疫调节作用。图1说明了假设益生菌在口腔疾病的机制。
口头申请的益生菌
也有许多miroorganisms列为益生菌和益生菌属于乳杆菌属和双歧杆菌[1] 。对于益生菌的研究重点集中于嗜酸乳杆菌,干酪乳杆菌,罗伊氏乳杆菌和双歧杆菌[3] 。对于口头申请, L. rhamnosous GG和罗伊氏乳杆菌已减少变形链球菌的数量,从而既可以发挥的重要作用,为口服益生菌,预防careis [ 15 ,23 , 25] 。近日, L. rhamnosous GG发现,以减少口腔念珠菌算作,这一发现表明另一种方法来消除口腔酵母[19] 。口头申请的可能的益生菌是存在于表1 。
表1中。菌株视为益生菌的口头应用[ 1 ] 。
临床研究
只有少数的研究已进行了评估益生菌的作用和影响,为促进口腔及牙齿健康。在芬兰首都赫尔辛基,人们发现管理L. rhamnosous GG给孩子减少龋齿和初龋过程。 594名儿童提供了益生菌的牛奶和正常牛奶餐,并在7个月内,实行每周5天。龋齿的风险,临床和微生物的牙菌斑和唾液变形链球菌水平的相关数据计算,结果显示计数较低变形链球菌和龋齿少[7] 。
再次在芬兰进行的另一项研究,报道L. rhamnosous GG和双歧杆菌有抑制作用,对变形链球菌和酵母菌于青壮年消耗一种含奶酪的组合L. rhamnosous GG和双歧杆菌的短期干预。这些科目包括74人18-35岁的,它是双盲,随机,安慰剂对照研究。虽然显着减少变形链球菌计数观察,干预组在后处理期间,任何对变形链球菌水平[ 45 ]干预组和对照组之间的显着差异。
最近,一项研究进行了与应用Weissella cibaria属于新属口服益生菌在韩国的。作者证明,两个W. cibaria隔离从人类唾液具有抑制活性生物膜的形成,无论是在体外和在vivo.72健康受试者为20和30岁之间的自愿参与到这项研究中。测量斑块评分基于简化口腔卫生指数( OHI- S)的索引碎片的研究,以确定影响, W. cibaria隔离生物膜形成在成人,冲洗口前后的菌斑指数悬浮W. cibaria 。进行了评估。 CMS1应用结果表明,成人的菌斑指数显着减少。本研究试图Weissella属的菌株的试验,证明可用于口腔健康益生菌。此外, W. cibaria有没有,到目前为止,已报告有任何证据与致病性[ 12 ] 。
罗伊氏乳杆菌的效果,对慢性牙周炎患者进行了研究,马尔默,瑞典,这表明罗伊氏乳杆菌是有效的减少减少牙龈炎和牙龈出血。实行2周,进行随机,安慰剂对照,双盲研究。 59例牙龈炎接收到两个不同的罗伊氏乳杆菌制剂( LR -1或LR - 2 )之一。在59例患者中, 20例患者被随机选择LR - 1 , 21 LR-2和18安慰剂。所有3组,观察牙龈指数显着减少。菌斑指数观察到显着减少,在LR - 1和LR - 2从第0天至第14天,但没有在安慰剂组。罗伊氏乳杆菌的定植在第14天,观察到65%的患者在LR - 1和95 %的患者中的LR -2组[21] 。
安全方面的益生菌乳酸杆菌和双歧杆菌
在过去的几年里,因为增加了使用益生菌作为补充食品的安全问题已成为特别关注。适当使用益生菌,应在下列条件满足; 1 )假定益生菌应不致病。 2 )益生菌候选人不应该有任何致病细菌的生长因子。 3)益生菌候选人应不包含其他属很容易转移的抗生素抗性基因[18]。
益生菌产品不可避免地导致浓度增加,这些微生物在宿主体内[1 ]居民的消费量增加。双歧杆菌和乳酸菌的感染病例是巨大罕见,在过去的30年中,已经有大约180个报告病例[58] 。最受欢迎的罕见的情况下,由于乳酸杆菌的感染发生在患者的免疫功能低下或相关的疾病,如糖尿病,心血管疾病,胃肠道疾病,恶性肿瘤,或器官移植的患者[4]。
然而,并无任何证据表明无论是乳酸杆菌或双歧杆菌的消费机会性感染免疫功能低下患者之间谁更容易受到致病性细菌感染,或有更多的机会性感染的风险承受更大的风险。已经有一些临床研究益生菌的安全进行评估与艾滋病毒感染的患者,这些研究​​支持这些免疫功能低下的患者食用益生菌的安全性[49 ,50 ] 。
获得性抗生素抗性的情况下是安全使用益生菌的另一个重要标准。一些益生菌是密切相关的致病菌,这些益生菌可将其耐药性基因的潜在的病原体[22] 。抗生素耐药性( nonsusceptibility )被认为是没有风险的,当它不使益生菌在罕见的情况下无法治愈的感染或不发生任何转帐耐药性基因的潜在的病原体。
大量的乳酸杆菌菌株具有耐万古霉素。乳酸菌万古霉素抗性基因被认为是稳定地位于在染色体上,使他们的转院不太可能发生微生物之间的[51] 。
为了防止抗生素耐药性的目的,进一步的研究当考虑开发抗生素耐药性的物种的数量已增加,并且它现在越来越多的关注[1]时,需要做的工作。
适当的车辆管理益生菌
益生菌应该能够坚持到牙体组织,将致龋细菌的生物膜和竞争[32] 。为了实现这一目标,口腔中的益生菌主要是做安装。然而,益生菌和斑块之间的相互作用时间是重要的因素,因为益生菌的活性增加,如果益生菌安装在牙菌斑中的持续时间较长的接触时间[3] 。此外,在为牙科疾病的预防或治疗,特别设计的公式,移动设备,或载体提供益生菌慢慢进入口腔环境可能被认为[1]。在这个角度来看,这里讨论的是用于口服益生菌的适当的车辆。
牙科研究结果表明,益生菌酸奶的消费量与乳酸杆菌在口腔环境中的安装无关。到今天为止,它是不确定的益生菌定植在口腔组织能力。任何残留的抗菌活性消费割让后没有观察到,而经常食用酸奶含有益生菌,可以减少唾液乳酸杆菌的数量和变形链球菌[ 33,34 ] 。
乳酸菌( LAB )已被认为是由于其生产发酵的糖和酸为条件致病菌。这些细菌,乳酸杆菌和变形链球菌被认为是不利于口腔健康[47] 。尽管在低pH值环境的贡献的,良好的缓冲容量的牛奶施加适当的pH值,当LAB给药牛奶的装置[48] 。此外,钙和其他物质可以在嘴里的牙齿表面和抑制有害微生物菌群,坚持在保护中发挥着重要的作用。
在最近的研究中,乳酸杆菌口服胶囊和液体形式确定直接接触口腔的作用,并检查是否施加给药益生菌减少致龋的变形链球菌水平。在该研究中,乳酸杆菌在液体和胶囊的形式给药,有助于增加乳酸菌的计数,而在变形链球菌计数,没有观察到任何显着性差异[24]。
值得要注意的是,牙齿脱矿减少可能是由于高浓度的钙,而不是假定的益生菌, lactobcilli ,在乳品消费产品,同时含有较高的钙和推测的益生菌[3]的情况下。
奶酪可能是一个理想的载体交付口服益生菌,促进牙齿健康[2] 。奶酪是对口腔健康发挥有益的作用,其管理的方式,防止脱矿和促进牙釉质的再矿化,并减少唾液变形链球菌计数显着水平[46 ] 。
口香糖含罗伊氏乳杆菌Prodentis的是预防龋齿的一种方式。 [口香糖的实践,一天两次是已知的,显着地减少在口腔中的变形链球菌计数[ http://www.biogaia.se ] 。此外,秸秆含有益生菌的非乳制品传递是另一种有效的方法,和它的发送方法表现出显着性水平,减少唾液变形链球菌的安慰剂对照研究中[54] 。
表2示出了载流子的各种装置在牙齿组织[1]益生菌交付日期促进。
Weissella cibaria :新的潜在候选人口头probioics
weissella种属于乳酸菌属Weissella最近已分离的乳杆菌属的16S rRNA基因系统发育分析。 (图2) [39]。 weissella cibaria是革兰氏阳性和异型,非孢子形成的,非能动杆菌发酵的食物,包括朝鲜泡菜是隔离的。这个物种被称为产生的葡聚糖蔗糖[ 38] 。尽管这个物种的特性,其对牙齿健康的影响进行了研究最近。
乳酸菌(LAB)主要栖息于胃肠道( GI道) ,其中一些已被报道施加有益的健康的人,由于对一些致病性感染[36,37]的保护作用。然而,大部分的乳酸菌是众所周知的发挥的机会龋齿的发病机制中的作用,因为它们的生产乳酸的脱矿的牙釉质的牙及胞外多糖可引起导致贡献,提升他们坚持齿[35] 。
最近, 2006年Chung等人展示了形成Weissella cibaria在变形链球菌的生物膜,无论是在体外和体内的抑制能力。在这项研究中,两个W. cibaria菌株, CMS1和CMS2进行分离,选择的基础上变形链球菌生物膜形成的抑制效果。其结果是, 2个W. cibaria菌株表明S. mutans.W增殖的显着抑制。 cibaria菌株22和44倍的组中的变形链球菌的增殖减少给药对照组(表3)相比,有两个W. cibaria隔离。然而,变形链球菌的生长W. cibaria的任何抑制活性,没有观察到。培养物上清液( CS )条2个W. cibaria菌株没有显示任何明显的变形链球菌的增殖(表3 )的抑制效应,而在CS的W. cibaria污渍减少变形链球菌生物膜形成的(图2) 。因此,作者得出结论,联营公司与W. cibaria CMS1 CMS3的抑制作用可能会导致主要从物质的能力,直接抑制变形链球菌生物膜的形成,而不是由抗菌材料抑制变形链球菌生物膜[ 12 ] 。
坚持口腔组织及牙齿表面的益生菌定植的重要前提,在这个生态系统中的微型生物群提供具有竞争力的优势[57] 。以往的研究表明,具有较强的聚集能力与细胞的黏附性能。 Kang等人(2005)展示合作聚集能力W. cibaria 。与Fusobacteruum具核以及上皮细胞的粘合性W. cibaria 。 [14] 。作为桥的有机体,具核梭杆菌,使其他细菌定植的共聚合[55] 。已经有许多的研究显示,共聚合能力的乳杆菌种可以防止形成的阻挡乳酸杆菌[ 27 , 56] ,病原体生长的致病细菌的定殖,也能抑制由各种物质的乳酸杆菌[14] 。
Kang等人( 2005 ),其特征在于核的各种预处理细菌细胞介导的粘附的的W. cibaria组件。链霉蛋白酶处理的核不抑制共凝集,然而,它在W. cibaria的情况下,在这两个物种之间的共聚合导致额外减少,从而建议proteinaceus的间相互作用的性质。耐热部件牢固地附着在细胞表面W. cibaria 。负责核聚集他们的合作。本研究的结果还表明的重要作用,在上皮细胞的细胞壁遵守的S层蛋白W. cibaria 。的。的上皮细胞W. cibaria的密合性进行了调查。所有三个W. cibaria菌株十分的KB细胞和HeLa细胞,但上皮细胞粘附到W. cibaria的后氯化锂处理(图4)显着降低。这些结果表明,表面层的的W. cibaria菌株蛋白质是紧密联系在一起的粘附过程[14] 。
值得注意的是,生态的Weissella cibaria的pH值( pH值5.5以上)高在没有连同乳酸菌,从而排除[12]在龋齿的发展机会的作用的可能性,由于生产乳酸。这些特性的W. cibaria的强烈建议适用于口腔的益生菌候选的可能性。
泡菜:新水库的益生菌
泡菜是众所周知的韩国传统发酵食品的各种蔬菜。是中国白菜乳酸发酵的产物塞满了各种不同的香料,辣椒,大蒜,生姜[ 11 ] 。
当考虑到受泡菜发酵的子集,明串珠Weissella的不同的种群动态,微生物群落泡菜是完全不同于其他发酵植物性食品,乳酸菌种[10]。在一般情况下,乳酸菌发酵植物性食品中发挥重要作用[11]。墨西哥pozol ,通过发酵产生的酸饮料的nixtamal [42 , 43]在发酵过程中乳酸菌发挥的重要作用。磅。 plantaum和Lb 。 manihotivonrans优势种,在发酵过程中酸味木薯淀粉[ 41 ] 。 LC 。 mesenterteroides , P.戊糖, LB 。短和磅。 plantrarum发挥的重要作用,在发酵saukeraut的[40] 。
, Weissella cibaria的泡菜发酵以及两个明串珠菌的物种的情况下,特别是柠檬明串珠菌和明串珠菌gasicominatum的优势种早期阶段( pH值4.6 ) ,然后微生物多样性显着降低,即Weissella koreensis的成为优势种的后期阶段。 (15 ℃节目:温度从15℃下降至-1 ℃ ( 3天) ,超过24小时) [10] 。 Weissella koreensis ,嗜冷菌,可主导品种,因为它能够在紧张的条件下成长,如-1 ℃和pH值<4.3 ,被剥夺了大多数现有的其他物种成长能力。 (图5)表4给出了泡菜发酵过程中乳酸菌种组成在15 ℃程序[ 10 ] 。
发酵温度,以确定微生物种群的关键因素之一,在泡菜是不同于其他奶制品发酵植物性食品,当考虑的事实,适当的泡菜发酵温度为15℃ ,而不是37 ~45 ℃ ,其中奶制品适当的发酵[10]。
结论
口腔疾病是最常见和费用的形式的人类感染[3] 。已经有限制的控制能力实际感染,尽管氟等预防方法,在口腔疾病的急剧下降的贡献。使用益生菌的Bacteriotheraphy可能提供替代的和有前途的方式来摆脱致病细菌的成员,并导致微生物生态系统平衡的动态平衡[3] 。
最可能的是,它是可能的,假定益生菌机制是相同的,它们的作用模式,在胃肠道中含在口内,当考虑一个事实,即口胃肠道[2]组成的第一个器官。最新的,在口腔中的益生菌的动作数据仍然是稀疏。公认的益生菌的作用机制及其可能对口腔生物膜的影响还需要进一步研究。
益生菌的安全性还需要进一步的调查,即使感染的情况下,由于双歧杆菌和乳酸菌等益生菌,是极为罕见的[52 , 53] 。进一步研究安全的需要变得明显时考虑益生菌产品不可避免地导致这些微生物在宿主体内居民的浓度增加的消费量增加[1]。
乳酸菌(LAB)主要栖息于胃肠道( GI道) ,其中一些已被报道施加有益的健康人由于他们的保护作用对病原感染[ 36 , 37] 。然而,大部分的乳酸菌是众所周知的发挥的机会龋齿的发病机制中的作用,因为它们的生产乳酸引起脱矿的牙及胞外多糖的珐琅有助于提升它们加入到牙齿[35] 。
发现益生菌候选人的目的,泡菜,韩国发酵食品中可能被视为新水库益生菌。与乳品发酵产品,泡菜是中国各种蔬菜白菜乳酸发酵产品。发酵温度,微生物种群的重要决定因素之一,是15 ℃ ,而不是37 ~45℃ 。作为结果,是完全不同的微生物群落泡菜发酵奶制品以及其他蔬菜发酵食品泡菜发酵是由不同的人口的子集,明串珠Weissella的动态时考虑的事实,乳酸杆菌[10]。
Weissella cibaria居住泡菜的口服益生菌是一个很好的例子。的抑制能力Weissella cibaria的变形链球菌生物膜形成中所示,无论是在体外和体内[12]。 W. cibaria的粘附性,益生菌的殖民化的一个重要前提[ 57] ,上皮细胞被证明,它可以提供有竞争力的优势,在这个生态系统的微​​生物[11]。步滚动生态的Weissella cibaria的pH值高( pH值5.5以上)在没有连同乳酸菌;因此,机会在龋齿的发展,由于生产乳酸的作用可能被排除的可能性[12] 。这些特性的W. cibaria的强烈建议适用于口腔的益生菌候选的可能性。
作为新的水库泡菜的可能性是值得加以考虑的目的寻找益生菌的考生,可能有新的特点。
参考文献
[1] ,我Stamatova JH下列的益生菌:贡献口腔健康口腔疾病13 , 443-451 (2007) 。
[2]尤卡H.下列的(2005)回顾益生菌:他们有口腔医学和牙科的作用? EUR口腔科学113 : 188-196 。
[ 3 ]恰拉尔乙Kargu ,我Tanboga ( 2005) Bacteriotherapy和益生菌对口腔健康的作用
口腔疾病11 , 131-137
[ 4 ];体育博列洛, W·哈姆斯P , W. HOLZAPFEL , P. MARTEAU , J. Schrezenmeir , M. Vaara ,安全V. Valtonen (2003)的益生菌含有乳酸菌或双歧杆菌临床传染病2003 ; 36:775-80
[5] Saxelin M.乳酸菌GG - 一个人类的益生菌,全面的临床文档。食品牧师诠释1997 ,13 : 293-313 。
[ 6 ]席尔瓦,雅克布斯NV , Ç Deneke , SL戈尔巴奇。从人乳杆菌菌株的抗菌物质。抗生素杂志1987 ,31 : 1231-1233 。
[7 ] Schupbach P, JR Neeser ,中号Golliard ,中号Rouvet ,古根海姆B.注册成立的caseinoglycomacropeptide caseinophosphopeptide到唾液薄膜抑制变形链球菌粘附。 Ĵ登特住宅1996 ,75 : 1779年至1788年。
[8] Isolauri E,萨米宁S.光伏Kirjavainen ,益生菌在治疗肠道感染和炎症的作用?肠道2002 , 50 (增刊III ):54-59 。
[9] AC Ouwehand 。从实验室的抗菌成分。 :萨米宁S, A,赖特主编。乳酸菌。纽约:马塞尔德克尔公司, 1998; 139-159 。
[10]真熙CHO1 ,冬云Lee1 ,阳2 Changnam , Jongin Jeon2 , : Jeongho Kim1涵1 Hongui ( 2006 )微生物种群动态的泡菜,发酵白菜产品。 FEMS微生物LETT 257 262-267
[11] MYUNGJIN金, Jongsik春(2005)细菌群落结构泡菜,韩国蔬菜发酵食品,如16S rRNA基因分析所揭示的。国际食品微生物学杂志103 91-96
[12 ]吴明贤康, J.涌, S. M.金正日K.-H.杨经绥哦(2006年)的影响Weissella cibaria隔离变形链球菌生物膜的形成。龋病, 2006 , 40:418-425
[13]康M - S ,金B-G , H-C ,李涌J ,哦J - Ş 。阻抑的Weissella cibaria的效果
挥发性含硫化合物的生产菌株。临床牙周2006 ,33 :
226-232 。
[14]弥熙山姆娜,孙康,钟硕哦(2005年)共凝集能力的Weissella cibaria菌株具核梭杆菌和上皮细胞的粘附性FEMS微生物学快报253 ( 2005) 323-329
[15] Ahola AJ Suomalainen ,意林Knuuttila的H, T等人(2002) 。食用含益生菌的奶酪龋齿的危险因素及其对短期的。拱口腔生物学47 :799-804 。
哈姆斯Boriello SP , WP , HOLZAPFEL W等人(2003) [16] 。含有乳酸菌或双歧杆菌的益生菌的安全。临床传染病杂志36 :775-780 。
鲍里斯· S,苏亚雷斯JE BARBES C( 1997 ) [17] 。从Lacobacillus加氏乳杆菌,阴道隔离的聚集促进因子的表征。应用微生物学83 :413-420 。
[18] Grajek W,奥莱尼克à ,抿了(2005 ) 。益生菌,益生元和抗氧化剂,功能性食品。生物化学与生物物理学波尔52 :665-671 。
[19 ] Hatakka K , Ahola AJ ħ意林Knuuttila的,理查德森中号, Ť Poussa , :下列的JK (2007年) 。益生菌减少中老年人口腔念珠菌 - 一项随机对照试验的患病率。 Ĵ登特住宅86 :125-130 。
[20] Kolenbrander PE (2000年) 。口腔微生物群落:生物膜,互动,和遗传系统。安奴冯微生物54 : 413-437 。
[21 ] Krasse P,卡尔松乙,达尔Ç ,三位的A, A,尼尔森Sinkiewicz G( 2006 ) 。减少牙龈出血,减少牙龈炎的罗伊氏乳杆菌益生菌。华瑞登特Ĵ 30 :55-60 。
22 ]莱斯特CH , Frimodt马勒Ñ ,索伦森TL ,莫奈DL , Hammerun AM (2006) 。瓦纳从肠球菌耐药基因在体内转移的隔离动物源性肠球菌隔离人类起源在人类志愿者的肠子。抗生素杂志50 : 596-599 。
23 ]下列的JH ,安蒂拉ħ ,萨米宁Ş (1994) 。从健康志愿者唾液乳酸杆菌的菌株GG ( ATCC 53103 )准备与细菌的酸奶消费后的恢复。 MICROB生态学报健康DIS 7 :295-298 。
[24]高山龙男, Vastola Marigo M, L等人(2004年) 。益生菌治疗增加唾液乳酸杆菌的罪名:一项双盲,随机,对照研究。消化69 :53-56 。
[25]核苷酸酶K, L, Hatakka Savilahti É等人(2001) 。长期食用益生菌鼠李糖乳杆菌GG ,龋齿龋齿高危儿童牛奶的影响。龋齿35: 412-420 。
[26 ] Nikawa H, Ş Makihira ,福岛ħ ħ西村,尾崎Ÿ ,石田K( 2004) 。罗伊氏乳杆菌发酵牛奶中的降低口腔变形链球菌运输。研究食品微生物95 :219-223 。
[ 27 ]里德, McGroarty的JA ,安戈蒂ŗ ,库克RL (1988) 。生产乳酸菌抑制剂对大肠杆菌和尿路病原体共凝集能力。微生物学34 : 344-351 。
[28]罗拉Ogaard G, B( 1991 ) 。临床效果和机制的止龋行动含氟牙膏:审查。诠释登特J 41 :171-174 。
[29]卡塞尔R, G,艾伦: :万勤DF等(1997 ) 。传染病规划研讨会报告。国立牙科及颅面研究:马里兰州贝塞斯达。
[30]帝国E( 2001 ) 。龋齿和牙周健康流行病学在欧洲的发展趋势。诠释登特Ĵ 51 (增刊) :392-398 。
[31] Kargul B, E,恰拉尔Tanboga我(2003年) 。加氟水的历史。临床儿童牙医学杂志27 :213-217 。
[32] Grudianov AI耶娃NA ,福缅科EV (2002年) 。使用的的益生菌Bifidumbacterin和Acilact片治疗牙周发炎。 Stomatologiia MOSK 81 :39-43 。
[33 ] Busscher HJ ,穆德AF , ,范德美HC (1999年) 。体外黏附到釉质和齿面从生物酸奶的乳酸菌在体内定植。龋齿33: 403-404 。
G, S, Tarsitani PETTI D'阿卡(2001 ) [34] 。酸奶对人体的唾液菌群的效果的随机临床试验。拱口腔生物学46: 705-712 。
[35]莱歇WJ :人类龋齿的变形链球菌的作用。微生物牧师1986 ,50 : 353-380 。
[ 36 ]吉利兰SE , CR尼尔森,麦克斯韦Ç :嗜酸乳杆菌同化胆固醇。应用与环境微生物学, 1985 , 49 :377-381 。
[37 ]吉尔HS ,舒Q ,林慧玲, KJ拉瑟弗德,跨ML :对转运鼠伤寒沙门氏菌感染小鼠喂养提升免疫力的益生菌鼠李糖乳杆菌菌株HN001的保护。医学微生物学和免疫学杂志2001; 190 :97-104 。
[38 ] KJ Bjorkroth , ü士林格, Geisen ŗ ,魏斯Ñ ,乙Hoste先生, WH HOLZAPFEL , HJ Korkeala ,参照Vandamme P : ,分类研究Weissella混淆和描述Weissella cibaria SP 。十一月,在食品和临床样品中检测到。 SYST EVOL研究微生物学2002 , 52 :141-148
[39]窗框ME , WH HOLZAPFEL :食品和他们目前的分类学的乳酸菌。研究食品微生物1997 ,36 :1-29 。
[40 ]佩德森,C.S. ,奥尔伯里, M.N. ,1969年。酸菜发酵。纽约州农业实验站通报,第一卷。 824 。纽约州农业实验站,日内瓦,纽约。
[41 ]奥马尔, NB , AMPE ,楼Raimbault , M. ,盖特, JP , Tailliez , P. ,2000 。木薯的酸味淀粉(哥伦比亚)乳酸菌分子的多样性。 SYST 。应用微生物。 23 , 285-291 。
[ 42 ] AMPE , F. ,本·奥马尔, N. , Moizan , C. , Wacher , C. ,盖特,太平绅士, 1999年。多相在Mexican pozol的,发酵的玉米面团,微生物的空间分布的研究表明,有必要培养独立的方法,调查传统发酵。应用环境。微生物。 65, 5464-5473 。
[43埃斯卡兰特, Wacher , C. , Farres , A. , 2001年。传统的墨西哥发酵面团pozol的乳酸细菌多样性16S rDNA序列分析确定。诠释。 J.食品微生物。 64, 21 - 31 。
[44]加藤我Ť Yokura ,穆泰·干酪乳杆菌在小鼠体内的巨噬细胞活化。微创免疫学杂志1983; 27 :611-618
[45 ] Ahola AJ ħ意林Knuuttila的, Ť Suomalainen , Ť Poussa , Ahlstrom公司à ,下列的JH ,科尔佩拉R.短期的食用含益生菌的奶酪龋齿的危险因素及其对。拱门口腔生物学报2002 , 47 :799-804 。
[46 ]哈珀DS ,奥斯本JC , JJ Hefferren ,克莱顿R.止龋评价奶酪不同的物理和成分特点。龋齿, 1986 , 20 :123-130 。
[47]布袋CS , R, Mogodiri Cleaton - 琼斯PE 。变形链球菌和乳酸杆菌在同一个口与无龋齿的儿童健康和龋齿。微生物生态学报健康DIS 2000 , 12 :35-41 。
[48 ]核苷酸酶L, K表Hatakka , É Savilahti ,中号Saxelin ,宝¨ NKA ¨ A, T, Poussa科尔佩拉ŗ ,下列的JH 。长期食用益生菌鼠李糖乳杆菌GG ,牛奶中的龋齿儿童龋齿风险的影响。龋病, 2001 , 35 : 412-420
[49]沃尔夫BW ,惠勒KB , Ataya , DG , KA Garleb 。补充罗伊氏乳杆菌的人口感染了人类免疫缺陷病毒的安全性和耐受。食品化学毒理学杂志1998 , 36: 1085至94年。
[50 ]坎宁安Rundles提供的Ş Ahrne 'S, Bengmark Ş ,等。益生菌和免疫反应。上午胃肠病学杂志2000 ; 95 :S22 -5 。
[ 51 ] Tynkkynen S ,辛格KV , Varmanen P.万古霉素耐药因子鼠李糖乳杆菌GG有关抗万古霉素肠球菌(面包车)基因。研究食品微生物学1998 , 41:195-204 。
[52]加塞F.安全乳酸细菌和它们在人体临床感染的发生。公告DE L'巴斯德研究所1994; 92:45-67 。
[53 ] Saxelin男,庄NH ,乙Chassy ,等。乳酸杆菌和1989-1992年在芬兰南部,菌血症。感染1996 , 22:564-6 。
[ 54 ] C : ¸ aglar E, SK Cilder , Ş Ergeneli , Ñ Sandalli , Ş Twetman ( 2006 ) 。唾液变形链球菌和乳酸水平后,摄入的益生菌罗伊氏乳杆菌ATCC 55739草帘或片剂。文献Odontol SCAND 64 :314-318 。
[55] Kolenbrander PE (2000年) 。口腔微生物群落:生物膜,互动,和遗传系统。安奴冯微生物54 : 413-437 。
鲍里斯· S,苏亚雷斯JE BARBES C( 1997 ) [56] 。从Lacobacillus加氏乳杆菌,阴道隔离的聚集促进因子的表征。应用微生物学83: 413-420
[57]拉蒙特R.J.和詹金森, HF (2000)黏附在口腔中的生态决定因素:口腔细菌生态的分子基础(香港仓光,和艾伦, RP , EDS ) ,第131-168页。地平线科学出版社,怀蒙德姆
[58 ]坎宁安Rundles提供的Ş Ahrne 'S, Bengmark Ş等。益生菌和免疫反应。上午胃肠病学杂志2000 ; 95 :S22 -5 。