essay代写,代写assignment,paper代写,代写留学作业,英国作业

导航切换

QQ:
153688106

二维码

澳洲assignment代写|澳大利亚悉尼大学自然科学留

浏览: 日期:2020-06-10

澳大利亚西悉尼大学自然科学留学生作业范文:Tripuhyite and schafarzikite: two of the ultimate sinks for antimony in the natural environment
 
 
The Journal of Burraga Sciences
 
 
ABSTRACT
In this section you write a 100-word summary of your report.
In order to clarify the roles that secondary minerals may determine the extent of the dispersion of antimony in oxidising environments, syntheses and stability studies of the oxides schafarzikite, FeSb2O4, and tripuhyite, FeSbO4, have been undertaken. Solubilities in aqueous HNO3 were determined at 298.15 K and the data obtained used to calculate values of ΔGfө at the same temperature. The derived ΔGfө(s, 298.15 K) values for FeSb2O4 and FeSbO4 are –959.4 4.3 and –836.8 2.2 kJ mol–1, respectively. Results have been compared with electrochemically-derived data in the literature, extrapolated from 771-981 K. The present study has shown conclusively that whilst the mobility of Sb above the water table is limited by simple Sb(III) and Sb(V) oxides and stibiconite group minerals, depending upon the prevailing redox potential and pH an important ultimate sink for Sb in the supergene environment is tripuhyite. 
 
 
Key words : tripuhyite, schafarzikite, stibiconte, antimony, iron.
 
 
为了澄清,次生矿物可确定在氧化环境中的锑的分散程度的作用,合成和氧化物的红锑铁矿,fesb2o4,稳定性研究和锑铁矿,fesbo4,已经进行了。在水溶液在298.15 K和溶解度数据确定了使用在同一温度计算值ΔGFө。派生的ΔGFө(S,298.15 K)为fesb2o4和fesbo4值–959.44.3和–836.82.2 kJ摩尔–1,分别。结果已被与电化学衍生的文献中的数据比较,推断771-981 K.本研究得到结论,在某人的水面以上的流动性是通过简单的Sb(Ⅲ)和有限的Sb(V)的氧化物和黄锑华族矿物,取决于当时的氧化还原电位和pH值对锑在表生环境的一个重要极限沉锑铁
 
 
关键词:锑铁矿,红锑铁矿,stibiconte,锑,铁。
 
1. INTRODUCTION
In this section provide a background to your project; details on Sunny Corner, mine sites, sulfide deposits, soil chemistry, water chemistry, supergene geochemistry, etc. Be sure to discuss the type of sulfide deposit at Sunny Corner. Any historical information you may be able to source including geological information. Use the last paragraph to state your aims; if you read the last paragraph of this Introduction it reads “in this work…”. You should start your last paragraph in this fashion.
Annual production of antimony (Sb) ranks it ninth of all metals mined for industrial applications (Krachler et al., 2001; Filella et al., 2002a). Sb is a toxic heavy metal and this has occasioned many studies aimed at understanding its solubility behaviour in surface waters and how it may be immobilised in the supergene zone. Comprehensive reviews by Filella et al. (2002a,b, 2003, 2009) and Filella and Williams (2010) have increased our understanding of the behaviour of antimony in the natural environment when it is present at low concentrations and how this relates to assessment of toxicity. Reports concerning Sb in contaminated sites (e.g., Ashley et al., 2003; Wilson et al., 2004; Wilson et al., 2010; Tserenpil and Liu, 2011; Wang et al., 2011) and potential remediation measures (e.g., Navarro and Algucil, 2002; Biswas et al., 2009; Wu et al., 2010; Xi et al., 2011) have emerged in the literature. Nevertheless, conflicting reports of the mobility of Sb in hydrological systems, especially those in oxidising near-surface environments, remain scattered through the literature with some authors claiming that Sb is mobile (Vink, 1996; Krupka and Serne, 2002), some the contrary (Wilson et al., 2004), and others noting that little is known about the matter (Filella et al, 2002a, b). In order to resolve this divergence of opinion, knowledge is required of secondary Sb-bearing phases that may serve to limit Sb solubility
Antimony usually exists in oxidation states -III, 0, III and V, and all are found in Nature. Upon oxidation near the Earth’s surface, oxidation states III and V dominate, but the geochemistry of Sb in the supergene environment, above the water table, is still not well understood. The confusion arises to a large degree from assessments of solubility of Sb when using Sb2O5(s) as a proxy for naturally occurring secondary Sb(V) minerals (Vink, 1996; Bookins, 1986). The phase does not occur naturally. Studies that address this issue have emerged only recently, and have highlighted the roles that salts of the Sb(OH)6– ion and members of the stibiconite group (MxSb2(O,OH)7) exert a considerable control (Filella et al., 2009), an observation echoed by others (Majzlan et al., 2011). Still, it remains apparent that other controls must be more significant than these. 
 
 
In this work, syntheses and stability studies of the oxides schafarzikite, FeSb2O4, and tripuhyite, FeSbO4, were undertaken to derive ΔGfө(s, 298.15 K) values. These experimental values are compared to electrochemically-derived data in the literature, extrapolated from 771-981 K. The results of this study provide insights into the limited mobility of Sb in the natural environment. 在这项工作中,合成和氧化物的红锑铁矿,fesb2o4,稳定性研究和锑铁矿,fesbo4,进行了推导ΔGFө(S,298.15 K)值。这些实验值相比,电化学衍生的文献中的数据,从771-981 K。这项研究的结果提供洞察某人的有限的流动性,在自然环境中推断
 
 
 
2. MATERIALS AND METHODS
Only write about the methods you present in your results – if you have methods in this section that are not presented in the Results section, you will lose marks. Cut and discard the sections that are not relevant to your project. 
 
2.1 Soil Sampling Locations
Where did you sample? Use maps, words, GPS co-ordinates to illustrate where you took your samples. 
2.2 XRD
What type? Run time? Software?. 
2.3 Water 
How did you prepare your waters for digestion? 
2.4 SEM
How did you prepare your samples for analysis? 
2.5 Analytical techniques
Did you use the AAS? Which AAS (model, make, etc)? Did you calibrate the AAS (how)? Did you use duplicates or blind duplicates to test your accuracy?
2.3. Data analysis and modeling
Did you use any techniques to test the statistical significance of your data? Did you apply a model? 
 
 
3. RESULTS AND DISCUSSION
Here you report all your results. The secret is to be clear and concise. As this is a manuscript for a journal, you can put all Tables and Figure at the very end!! If you scroll to the end, you will see some Tables and Figure in their correct place. Use ONE whole page for EACH Table and Figure. 
 
 
3.1 Heavy metals in Sunny Corner discharge waters
Stibiconite group minerals are also known as pegmatitic accessories (c.f. stibiobetafite and stibiomicrolite, above) and romeite commonly occurs in pegmatites as well (Mason and Vitaliano, 1953; Anthony et al., 1990-2003; Brugger et al., 1997). However, in oxidized ores, they must crystallise from aqueous solution at ambient temperatures. It is thus pleasing that in conjunction with the work of Diemar et al. (2009) and earlier studies of stibiconite itself (Dehlinger and Glocker, 1927; Natta and Baccaredda 1933; Dihlström and Westgren, 1937; Baetsle and Huys, 1968; Abe, 1979, and references therein), the synthetic work reported here concerning stetefeldtite and bismutostibiconite completes the accumulation of reliable syntheses from aqueous solution of all members of the stibiconite group. 
 
 
3.2 Secondary minerals
Following the 40 day equilibration with 0.195M HNO3 the tripuhyite remained insoluble (Table X.X). For the congruent dissolution of the mineral according to equation (X.1), the stability of tripuhyite at 298.15 K may be calculated with the relationship [Fe3+]TOT = [Sb5+]TOT. 
 
 
3.3 Any other section you may want to include
Following the 40 day equilibration with 0.195M HNO3 the tripuhyite remained insoluble (Table X.X). For the congruent dissolution of the mineral according to equation (X.1), the stability of tripuhyite at 298.15 K may be calculated with the relationship [Fe3+]TOT = [Sb5+]TOT. 
 
 
3.4 Relationships between minerals and waters
Following the 40 day equilibration with 0.195M HNO3 the tripuhyite remained insoluble (Table X.X). For the congruent dissolution of the mineral according to equation (X.1), the stability of tripuhyite at 298.15 K may be calculated with the relationship [Fe3+]TOT = [Sb5+]TOT. 
 
CONCLUSIONS
What is the answer to the question (check you title/hypothesis)?
Tripuhyite has been shown to be the ultimate mineralogical “sink” for Sb in the oxidized, supergene environment at redox potentials higher than those that serve to stabilise schafarzikite. These findings build on the work of Diemar et al. (2009), who concluded that Sb was relatively immobile in the supergene zone. This conclusion is undoubtedly correct and the current study has identified other unsuspected phases that play a role in reducing the solubility of Sb. 
 
 
ACKNOWLEDGEMENTS
We thank…Charlie Murphy for driving the Hilux. Prof Williams and Prof Leverett for insightful information….Wayne for the AAS work…
 
 
 
 REFERENCES 
Use this referencing style APA!
Abe, M. (1979) Synthetic inorganic ion-exchange materials. XX. Ion-exchange properties of crystalline antimonic(V) acid with alkaline earth metal ions. Bulletin of the Chemical Society of Japan, 52, 1386-1390.
Brugger, J., Gieré, R., Graeser, S. and Meisser, N. (1997) The crystal chemistry of romeite. Contributions to Mineralogy and Petrology, 127, 136-146.
Filella, M., Williams, P.A. and Belzile, N. (2009) Antimony in the environment: knowns and unknowns. Environmental Chemistry, 6, 95-105.
Filella, M. and Williams, P.A. (2010) Antimony biomethylation in culture media revisited in the light of solubility and chemical speciation considerations. Environmental Toxicology, 25, 431-439.
 
 
Foord, E.E., Hlava, P.F., Fitzpatrick, J.J., Erd, R.C. and Hinton, R.W. (1991) Maxwellite and squawcreekite, two new minerals from the Black Range tin district, Catron County, New Mexico, U.S.A. Neues Jahrbuch für Mineralogie, Monatshefte, 363-384.
Gayer, K.H. and Garrett, A.B. (1952) The equilibria of antimonous oxide (rhombic)in dilute solutions of hydrochloric acid and sodium hydroxide at 25oC. Journal of the Amercian Chemical Society, 74, 2353-2354.
 
 
Natta, G. and Baccaredda, M. (1933) Tetrossido di antimonio e antimoniati. Struttura cristallina dell' antimoniato di antimonile (tetrossido di antimonio), suo isomorfismo con i piroantimoniati di piombo e di calcio ed esame röntgenografico delle ocre di antimonio (Cervantite, Stibiconite) e degli antimoniati idrati di calcio (Idroromeite) e di piombo (Bindheimite). Zeitschrift für Kristallographie, 85, 271-296.
Nordstrom, D.K., Alpers, C.N., Ptacek, C.J. and Blowes, D.W. (2000) Negative pH and extremely acidic mine waters from Iron Mountain, California. Environmental Science and Technology, 34, 254-258.
 
 
Orlandi, P. and Dini, A. (2004) Die Mineralien der Buca della Vena-Mine, Apuaner Berge, Toskana (Italien). Lapis, 1, 11-24.
Orosel, D., Balog, P., Liu, H., Qian, J. and Jansen, M. (2005) Sb2O4 at high pressures 
and high temperatures. Journal of Solid State Chemistry, 178, 2602-2607.
Williams, P.A. (1990) Oxide Zone Geochemistry. Ellis Horwood, Chichester.
 
 
Captions of Tables
Put the captions for all your Tables on this page. The on the following pages have each Table on its own separate page. 
Table 1. Pourbaix diagram displaying stability fields of schafarzikite and tripuhyite with respect to dissolved iron species, calculated at 298.15 K and total dissolved concentrations of Sb and Fe of 10–6 mol dm–3 (bold lines). Areas of predominance of dissolved Sb species are separated by dashed lines.
Table 2…
Table 3…
 
 
 
Table 1. Powder X-ray data for synthetic tripuhyite 
 
h  k  l   dobs/Å  dcalc/Å 
    1  1  0   3.2786    3.2792    
    1  0  1   2.5625    2.5627    
    2  0  0   2.3185    2.3187    
    1  1  1   2.2425    2.2430    
    2  1  0   2.0735    2.0739    
    2  1  1   1.7193    1.7194    
    2  2  0   1.6395    1.6396    
    0  0  2   1.5376    1.5375   
    3  1  0   1.4665    1.4665    
    1  1  2   1.3920    1.3921    
    3  0  1   1.3813    1.3811   
 
 
 
Captions of Figures
Put the captions for all your Figures on this page. The on the following pages have each Figure on its own separate page. 
 
 
Figure 1. Pourbaix diagram displaying stability fields of schafarzikite and tripuhyite with respect to dissolved iron species, calculated at 298.15 K and total dissolved concentrations of Sb and Fe of 10–6 mol dm–3 (bold lines). Areas of predominance of dissolved Sb species are separated by dashed lines.
Figure 2…
Figure 3…
 
 
澳大利亚西悉尼大学自然科学留学生作业范文:Tripuhyite schafarzikite:在自然的环境中锑的最终汇
 
 
杂志Burraga科学
 
 
摘要
在本节中,你的报告你写了一个100字的摘要。
为了澄清次生矿物的角色可决定环境,合成及稳定性研究的氧化物schafarzikite的,FeSb2O4,tripuhyite,FeSbO4氧化锑的分散程度,已经开展。在298.15 K在含水硝酸中的溶解度进行了测定,并在相同温度下,获得的数据用于计算的ΔGfө值。派生ΔGfө(298.15 K)值FeSb2O4 FeSbO4 -959.44.32.2 KJ摩尔-836.8-1,分别。结果已被较电化学导出的数据在文献中,从771-981 K,外推得出结论本研究显示,虽然高于地下水位的Sb的流动性是有限的简单的锑(III)和锑(V)氧化物stibiconite族矿物,这取决于当时的氧化还原电位和pH锑在表生环境中的一个重要的最终汇是tripuhyite的。
 
 
关键词:schafarzikite tripuhyite,stibiconte,锑,铁。
 
 
K表和溶解度数据,确定了使用在同一温度计算值ΔGFө。派生的ΔGFө(S,298.15 K)为fesb2o4和fesbo4值-959.44.3和-836.82.2 KJ摩尔-1,分别。结果已被与电化学衍生的文献中的数据比较,推断771-981
 
 
关键词:锑铁矿,红锑铁矿,stibiconte,锑,铁。
 
1。简介
在本节中,您的项目提供了一个背景阳光角落,矿点,硫化物矿床,土壤化学,水化学,表生地球化学等的详细信息,请务必在阳光角讨论硫化物矿床类型。任何历史信息,您可能能够包括地质信息的来源。使用最后一段陈述你的目标,如果你看过这个简介上写着“在这项工作中......”的最后一段。以这种方式,你应该从你的最后一段。
年产锑(Sb)位列第九所有金属开采工业应用(Krachler等,2001;菲莱利亚等,2002)。锑是一种有毒的重金属,这也惹起了许多研究,旨在了解其在地表水中的溶解度行为,以及如何可以固定在表生区。综合评论由菲莱利亚等。 (2002A,B,2003年,2009年)和菲莱利亚和威廉姆斯(2010年)增加了我们在自然的环境中锑的行为的理解时,它是目前在低浓度,这涉及到评估的毒性。报告关于锑污染场地(例如,阿什利等人,2003年,威尔逊等人,2004年,威尔逊等人,2010;伦皮尔和刘,2011年,王等人,2011年)和潜在的补救措施(如2002纳瓦罗和Algucil,比斯瓦斯等人,2009; Wu等人,2010;曦等,2011年)已经出现在文献中。然而,矛盾的报告的水文系统,特别是在近表面的氧化环境中的Sb的流动性,保持分散的,通过一些作者声称,Sb的移动(温克,1996;克鲁普卡Serne,2002)中的文献,一些相反(威尔逊等人,2004),和其他人指出,很少有人知道此事(菲莱利亚等人,2002年a,b)条。为了解决这种分歧的意见,知识是必需的二次锑息阶段,这可能有助于限制锑溶解度
通常存在于氧化锑-III,0,III和V,都在自然界中发现的。接近地球表面氧化后,氧化态III和V占主导地位,但在表生环境地球化学锑,高于地下水位,仍然没有很好的理解。产生了困惑了很大程度从溶解度SB评估时使用Sb2O5(S)作为自然发生二次锑(V)矿物质(温克,1996年,1986年Bookins)的代理。阶段自然不会发生。解决这个问题的研究最近才出现的,突出的角色,盐的Sb(OH)6 - 离子和成员stibiconite团体(MxSb2“(O,OH)7)施加了相当的的控制(菲莱利亚等。 ,2009),观察呼应由他人(Majzlan等,2011)。尽管如此,它仍然明显,其他的控制必须是比这些更重要。
 
 
在这项工作中,合成及稳定性研究的氧化物schafarzikite,FeSb2O4 tripuhyite FeSbO4,承诺得到ΔGfө(298.15 K)值。在这些实验值进行比较,以电化学派生数据在文献中,外推771-981 K.从本研究的结果提供了有限的流动性分析上市公司在自然环境中的Sb。 K)值。这些实验值相比,电化学衍生的文献中的数据,从771-981 K表。这项研究的结果提供洞察某人的有限的流动性,在自然环境中推断
 
 
 
2。材料与方法
只写关于你提出的方法在您的结果 - 如果你有结果部分没有出现在本节中的方法,你会失分。剪下并丢弃到您的项目是不相关的部分。
 
2.1土壤采样地点
你在哪里品尝?使用地图,文字,GPS坐标,说明你把你的样品。
2.2 X射线衍射
什么类型的?运行时间?软件?
2.3水
你是如何准备你的水域消化?
2.4 SEM
你是如何准备你的样品进行分析?
2.5分析技术
是否使用了原子吸收光谱法? AAS(模型,等等)?您校准的AAS(如何)?你有没有使用重复或盲目重复来测试您的准确性?
2.3。数据分析和建模
你使用任何技术来测试您的数据的统计学意义?你申请一个模型?
 
 
3。结果与讨论
在这里,您的报告结果。秘密是简洁明了。由于这是一个手稿为一本杂志,你可以把所有的表和图的最末端!如果您滚动到年底,你会看到一些表格和图在他们的正确的地方。使用一整页,每个表和图。
 
 
3.1重金属在阳光角排放水
伟晶岩的配件(CF stibiobetafite stibiomicrolite,以上)和romeite通常发生在伟晶岩(梅森和维塔,1953年,安东尼等人。1990-2003年;布鲁格等,1997年)也被称为组Stibiconite矿物。然而,在氧化矿石中,它们必须在环境温度下从水溶液中结晶。因此,它是喜悦,连同的Diemar等人的工作的。 (2009)和早期的研究(stibiconite本身德林格尔Glocker,1927;纳塔1933年Baccaredda;的Dihlström和Westgren,1937年,1968年Baetsle和尼克豪斯;安倍晋三,1979年,和参考文献),合成工作报道有关stetefeldtite和积累bismutostibiconite完成可靠的合成水溶液中的所有成员的stibiconite组。
 
 
3.2次生矿物
0.195M HNO3继40日平衡的tripuhyite仍然不溶物(表XX)。根据公式(X.1)的矿物为全等溶解,在298.15 K tripuhyite的稳定性的关系,可以计算出[Fe3 +的] TOT = [Sb5中+] TOT。
 
 
3.3任何其他部分,你可能要包括
0.195M HNO3继40日平衡的tripuhyite仍然不溶物(表XX)。根据公式(X.1)的矿物为全等溶解,在298.15 K tripuhyite的稳定性的关系,可以计算出[Fe3 +的] TOT = [Sb5中+] TOT。
 
 
3.4矿物质和水域之间的关系
0.195M HNO3继40日平衡的tripuhyite仍然不溶物(表XX)。根据公式(X.1)的矿物为全等溶解,在298.15 K tripuhyite的稳定性的关系,可以计算出[Fe3 +的] TOT = [Sb5中+] TOT。
 
结论
答案是什么的问题(检查你的标题/假设)?
已被证明Tripuhyite更高比那些有助于稳定schafarzikite的氧化还原电位,是最终的矿物学“下沉”锑氧化,表生环境。这些发现建立的Diemar等工作。 (2009年),他得出的结论是,锑是相对稳定的,在表生带。这一结论无疑是正确的,目前的研究已经确定了发挥作用的溶解度降低锑其他意料之外的阶段。
 
 
致谢
我们感谢查理·墨菲驾驶的Hilux。威廉姆斯教授和教授莱弗里特洞察力的信息....韦恩AAS工作...
 
 
 
 参考
使用引用样式APA!
安倍晋三,M.(1979)合成的无机离子交换材料。 XX。结晶锑(V)酸与碱土金属离子的离子交换性能。通报化学学会,日本,52,1386-1390。
布鲁格,J.,,R.,Gieré的Graeser,S.和Meisser,N.(1997)的晶体化学romeite。供款矿物岩石,127,136-146。
菲莱利亚,M.威廉姆斯,P.A.和Belzile,N.(2009)环境中的锑:已知和未知。 6,环境化学,95-105。
菲莱利亚,M.威廉姆斯,P.A. (2010年)锑biomethylation的溶解度和化学形态的考虑,在重新培养基。环境毒理学,25,431-439。
 
 
,EE,Foord研究Hlava,PF,菲茨帕特里克,JJ,ERD,RC韩丁,RW(1991)Maxwellite和squawcreekite,两个新矿物黑色范围锡区,卡特伦县,新墨西哥,美国NEUES Jahrbuch毛皮Mineralogie,Monatshefte,363-384。
盖尔,K.H.和Garrett,A.B. (1952)在稀盐酸和氢氧化钠在25℃下的解决方案锑氧化物(菱形)的均衡。杂志的顾客化工学会,74,2353年至2354年。
 
 
纳塔,G. Baccaredda的,M.(1933)Tetrossido DI antimonioËantimoniati。 STRUTTURA cristallina戴尔antimoniato DI antimonile的(二tetrossido antimonio),锁isomorfismo CON我piroantimoniati DI PIOMBO E DI'意甲ED esameröntgenografico阿尔二OCRE antimonio(白安矿,Stibiconite)Édegli antimoniati的idrati的di CALCIO的(Idroromeite)E DI'PIOMBO(水锑铅矿) 。献给Kristallographie(杂志),85,271-296。
诺德斯特龙,DK,阿尔珀斯,CN,普塔切克,CJ和Blowes,DW (2000)负pH值和极酸性矿井水从Iron Mountain,加利福尼亚州。环境科学与技术,34,254-258。
 
 
的Orlandi,P.和迪尼,A.(2004)模具Mineralien DER:BUCA德拉腔矿,贝格Apuaner,Toskana的(ITALIEN)。青金石,1,11-24。
Orosel,H.,D.巴洛格,P.,刘谦,J.和扬森,M.(2005)Sb2O4在高压力
和高温。中国固态化学,178,2602年至2607年。
威廉姆斯,P.A. (1990)氧化带地球化学。埃利斯霍伍德,奇切斯特。
 
 
 
字幕表
此页面上的所有的表将字幕。以下页面上有各自的页面上每个表。
表1中。 Pourbaix图显示稳定的领域schafarzikite tripuhyite就溶解的铁物种,在298.15 K和总溶解浓度锑10-6摩尔DM-3和Fe(粗线)计算。溶解的Sb物种占优势的区域由虚线分开。
表2 ...
表3 ...
 
 
 
表1中。 X射线粉末合成tripuhyite数据
 
H K升dobs /Ådc​​alc的/Å
    1 1 0 3.2786 3.2792
    1 0 1 2.5625 2.5627
    2 0 0 2.3185 2.3187
    1 1 1 2.2425 2.2430
    2 1 0 2.0735 2.0739
    2 1 1 1.7193 1.7194
    2 2 0 1.6395 1.6396
    0 0 2 1.5376 1.5375
    3 1 0 1.4665 1.4665
    1 1 2 1.3920 1.3921
    3 0 1 1.3813 1.3811
 
 
 
标题图
把您所有的数字在此页面的标题。以下页面上有各自的页面上每个图。
 
 
图1。 Pourbaix图显示稳定的领域schafarzikite tripuhyite就溶解的铁物种,在298.15 K和总溶解浓度锑10-6摩尔DM-3和Fe(粗线)计算。溶解的Sb物种占优势的区域由虚线分开。
图2 ...
图3 ...